CaLIFORNIA POLYTECHNIC
StatE UNIVERSITY
San Luts Osispo, CA 93407

ECONOMICAL GRAPHICS DISPLAY SYSTEM
FOR FLIGHT SIMULATION AVIONICS

p 5y
FINAL REPORT WITH RECOMMENDATIONS

ABSTRACT

DURING THE PAST ACADEMIC YEAR THE FOCAL FOINT OF THIS
FROJECT HAS BEEN TO ENHANCE THE ECONOMICAL FLIGHT SIMULATOR
SYSTEM RY INCORPORATING IT INTO THE AREOQ ENGINEERING
EDUCATIONAL ENVIRONMENT. TO ACCOMFLISH THIS GOAL IT HAS
BEEN NECESSARY TO DEVELOP AFPROFRIATE SOFTWARE MODULES THAT
PROVIDE A FOUNDATION FOR STUDENT INTERACTION WITH THE
SYSTEM. IN ADDITION EXPERIMENTS HAD TO BE DEVELOFPED AND
TESTED TO DETERMINE IF THEY WERE APPROPRIATE FOR
INCORFORATION INTO THE BEGINNING FLIGHT SIMULATION COURSE,
AERO-418. FOR THE MOST FPART THESE GOALS HAVE RBEEN
ACCOMFLISHED. EXFERIMENTS HAVE BEEN DEVELOFED AND EVALUATED
BY GRADUATE STUDENTS. MORE WORE NEEDS TO BE DONE IN THIS
AREA. THE COMPLEXITY AND LENGTH OF THE EXFERIMENTS MUST BE
REFINED TO MATCH THE PROGRAMMING EXFERIENCE OF THE TARGET
STUDENTS. IT HAS BEEN DETERMINED THAT FEW UNDERGRADUATE
STUDENTS ARE READY TO ARSORE THE FULL EXTENT AND COMPLEXITY
OF A REAL-TIME FLIGHT SIMULATION. FOR THIS REASON THE
EXPERIMENTS DEVELOPED ARE DESIGNED TO INTRODUCE BASIC
COMPUTER ARCHITECTURES SUITABLE FOR SIMULATION, THE
FROGRAMMING ENVIRONMENT AND LANGUAGES, THE CONCEFT OF MATH
MODELES, EVALUTION OF ARUIRED DATA, AND AN INTRODUCTION TO
THE MEANING OF REAL-TIME.

THIS REPORT INCLUDES AN OVERVIEW OF THE SYSTEM ENVIRONMENT
AS IT PERTAINS TO THE STUDENTS, AN EXAMPLE OF A FLIGHT
SIMULATION EXPERIMENT PERFORMED BY THE STUDENTS, AND A
SUMMARY OF THE EXECUTIVE PROGRAMMING MODULES CREATED RY THE
STUDENTS TO ACHIVE A USER-FRIENDLY MULTI-PROCESSOR SYSTEM
SUITABLE TO AN AERD ENGINEERING EDUCATIONAL FROGRAM.

DUE TO THE RAFID CHANGING COMFUTER TECHNOLOGY RECOMMEND-
ATIONS TO INFROVE THE SYSTEM ARE INCLUDED. THESE RECOMMEND-
ATIGNS ARE DIRECTED TOWARD THE GRAPHICS FROBLEMS AND THE NEW
COMFUTER ARCHITECTURES NOW AVAILARLE AT LOW COST.

(NASA~-CR-1868%0) COGMNSMITAL AxAPHILCS NFIU-2T701

OISPLAY 5Y5TeM FUQ FLICSHT STAULATION

AVIDNICS Final Rreport {(Lalifornia

Polytechnic state Univ.) 5% D CSCL 01D unclas
3/06 0296155

BACKGROUND REVIEW

The basic hardware architecture of the system has not been
altered since the last praoposal. The simulator is
partitioned into three processors. The overall hardware is
iliustrated in Figure 1. The [ntel 28&8/10 SEC acts as the
command executive and graphics high-—level controller. The
Intel Z846/22 SEC handles all real ~time computations for
coantrol models and simul ations. The Intel 186/78 SRC
converts the high-level agraphics commands into the
appropriate qraphics primitives and controls the Intel B272
araphics praocessor.

Sottware development for any simulation is still conducted
utilizing the operating system RMA8&48. No attempt has beem
made, as yvet, to convert to RMXTRG. At presernt the Intel
1@ development system has LSMbytes of main memary. RMX286
requires at least .7Hbvtes for configuration. Adding
another .SMbytes te the system would solve this problem but
would introduce memory partitioning problems as it pertains
to MULTIRUS 1. RMX286 operates in protected address mode.
This forces a re-partitioning of MULTIRUS space and effects
all the processors in the system. Memory strapping options
tor the 186/78 SRC and the 386/27 SRC are limited. This
problem is still under investigation.

Input data to simuation models is currently created by
software curve generation. Software modules have been
developed this yvear to allow keyboard input to command the
input function and control the type of input, i.e., a
doublet, ramp, step, etc. The range of values and sample
time are also controlled. fAnalog I/70 is available but
memory partitioning must be altered teo accommodate the
Robotrol RME-731 analog I1/0 board.

the all “"glass cockpit® concept of this project is etill
centered around the usage of an inexpensive qraphics
cantroller and an RGE color monitor. The 18&/78 SRC
controller board is the direct interface to the Frinston
Graphics SR12-F color monitor. The system still utilizes
the Intel supplied VDI720 software package. This has praoven
to be inadaquate for real-time displays because of software
averhead. Buring the past academic vear the graphics
monitor has been utilized for the display of non real-time
data. The students graph the results of a simul ation run by
displaying normalized curves of appropriate data in colar.
At present hardcopy of these displays can not bhe obtained.

The simulation system is centered around Intel ‘'« 31@
devel apment system. It will be proposed in the future to
switch to an IEM FC/AT for all program devel opment. This
will make the 310 svystemn the target system for simulation
FUns ., In addition the students can develop software at a
rnumber of sites.

Graphics
Command Buffer
Generation

Executive
‘Command
Interface

Function
Generation

-Analog I/0

{ sBcvMoz Main Memory |
" 65K ‘: ZMBytes Operator Primitives
{ Cache (: Console
80287| | 80386 | LMemory | . { g - Eg?ﬁz_'}
Coproc cpuU Ei e -+ ——] Moni tor
1
l Dual l V(
{ E§55525555§;§SE$ Port .
SBC-

: $BC386/20 m':té”‘” : 012C| SBC286/20 7

' : . SBC186/78
' 16:32 lgonitor - SHB Video Graphics
' - onsole Subsystem
| Local ! /
(| Memory Seria]’ (}igi__. !\————__;
I pp—— |

1 7 | ’
7]

C///////////7///////// Multibus I 7277777~ //////A’>

]

l SBC215G
Analog : |
InPUtSﬁpt::zgx%g:kﬁ[::23§[Winchester Contro e

\
N
\ 163
Outputs X
: SBx218A O 320K
RMB731 Floppy Ctl]
[/0 Module

Figure 1.

CURRENT STATUS

The Intel Flight Simulator System is well suwited for the
educational environment because of the cost of the system
and because it is a modular system., It can be viewed by the
students as a complete flight simulator or as an educational
tool designed to introduce senior aero students to the world
af flight simulation. However the complexity of a multi-—
processing system without well established graphics has
proven to be a disadvantage when the primary goal is
modeling and the gathering of data.

For the past academic year the emphasis has been to develap
the necessary software modules required to create a "student
friendly" environment on the Intel 10 systein. It was felt
that student concentration should focus an aero modeling,
input/output scaling, reduction of data for analysis, sample
time, and frame time. FPast experience has demonstrated that
too much time can be spent introducing the system
architecture, the programming environment, and the
synchronization problems associated with a parallel
processing system. The goal has been to minimize this
overhead as it pertains to student involvement. Students
concentrate on converting a control ar simple simulation
model into an equivalent set of equations. They create
their own data bases and write their own intearation
algorithms. These program modules are linked and located
for proper execution on the 386/22 processor. A11 software
necessary to transfer their code the the 386 processaor has
already been devel oped. In addition the 386 processor
sUupports & custam mani tore desigrned to aid i bhe axecution
of the simulation.

To achieve the desired environment over I s0ftware
procedures have been developed, linked and installed on the
Intel 31@ System during the past academic year. The
students invoke the simulation software and follow the menu
driven insturctions. The menu instwcetions allow the
student to perform the following operations:

1. Select and initialize input variables for a aiven run.

2. Select the input waveforms and limits, At present
these include steps, ramps, and doublets. The inputs
are software generated as the A/D convertor board can
not be installed due to memory constraintes

S om

-

2. Download the simulation model to the Z846/22 SEC far
esecution. After downloading the simulation model the
initial data base is loaded by the Z8&6/10 processor via
shared memary., Startup, execution, and simulation run
time are all controlled by the 286/19 processor via the
command/executive menu.

4. The students can select the amount of data to be
collected +or display and can direct the data to the
1R system operator caonsole, the printer, or the col or
graphice display. At present all data directed to the
console or the printer is in "character" form anly.

Hardocopy graphics is not available at this time.

Figure 2 illustrates a simple bloclk
viewed by the students. A1l
Rirrogranmed frame rate, ie
shared memar sy, Thes

diagram of the system as
input data, updated at a
loaded into a common butffer in

e Coprocessor reads thies data by
sampling a "data¥flagsin" flag in shared MEMOry . If the
flag is "trueY the next computation cycle begines. The
output results are stored in shared memary by the =84&4/572
processor and the "data®flagsin® flag is set "false". It is
the responsibility of the Intel 286710 processor to analyze
this output data. format it for the proper display, and
store the output data in a buffer located in the local
memory of thé 286710 processor. The amount of data
collected is controlled by the initialization memu and
depends upon the selected frame time and the averall run
time of the simulation. All code to cantrol the colaor
graphics display resides within the executive module on the
286719 processor.

-

Figure I illustrates the basic flow controil for the

simul ation model executing on the I84/77 SRC. While thi-s
flow control model jis somewhat general purpose it is
tailored to control elements of the experiment illustrated
in Appendix 1. 1€ a different simualtion experiment i1s to be
run on the Z86/22 processor it would be the responsibility
of the students to alter the flow control of Figure 3 to
meet the requirements of the simulation.

the experiment illustrated in Appendix 1 ig & simple Fitch

Attitude Hold System. The students are required to
translate a block diagram of the system into a set of state
variable equations. They thern test the validity af the

equations using MATLAER. After a correlation is obtained
with the expected resulta the students program the eguations
using the high level language FLM&s&, They then prepare the
equations, integrated with the necessary flow control
illustrated in Figure 3, for downloading into the Intel
286/E2 processor board. The downloading process is
controlled by custom software residing on both the 284/10
Rrocessor and the 386/22 processor, The FLM8& proagram for
the Fitch Attitude Hold System is also illustrated in
Appendisx 1. Results abtained from this experiment were very
encouraging, however the amount ot effort put forth by the
students exceeded that af] nNarmal one ar two week
experiment.

MILNIML
3204
N |t —
SO IHAYMO e 4
e B 8L/981 %
— TALNIT / AT0SNOD
HOLYNILO —~
“ B1/98Z
37108NOD %
anNa3a %
zz/98¢ “
—
- HMOSS3D0MA &,N\K\.\\\\\\\\\\\\\w\. IS IITTTIMGINIIRITIIIINED HOS5FI0Nd
ZZ/985 L snaliam 21/987
THLINT = : JFLINT
|
AMOWIW
AFMYHS
g - o _
.‘.\C\l’. . ! -
ﬂ\\k\i N ™ W\ - x)/(\\\\\
- ——
\)f’{ll.i\.. lA...
HOLINOW Q I's ,/f!;/ LNZWA0TIANIA WYHOOHA
zmmu:u A IOMANOD NN
N A0 \ ¢ o A 405
: 15 | } NOILYZ INOSHONAS AHYMLAOE
NOTLYTNKW /) aNY \ 3A1LND3XI/ANUKHOD
/
4 Isva viva .
i) : .
o r 1\\\//i11\\\ ,ﬁlilx\V/// :J(\\\\\\ Mw \\\\//l{(\\\

< RNDI A

N

Incorporation of the above experiment into a mul ti-processor
system demands a user-friendly environment. For this reason
the integration of the above experiment into the aero
engineering cuwrriculum required the use of a
command/executive menu driven program consisting of over 30
software modules linked together and run as the primary task
on the 2846/10 processor. The main module program and an
explantion of its primary functions is illustrated in
Appendix 2. These modules controlled all data entry,
console displays, printer output, and the formating of
results for output to the VDI720 graphics package. Resul ts
were displaved in color on the Frinston Graphics FGSR12-F
color monitor. The displays could not be run in real —time
because of the software overhead assaciated with the VDI72@
araphics package.

To better understand the limitations associated the the
VEI720 agraphics package the following reviews the basic
structure of VDI and summerizes its performance.

Intel provided the iVDI7Z0 graphics package in ROM to handle
graphics routines such as graphics initialization, line
draw, text display, circles, etc. Unfaortunately, the
commands to the controller are difficult to understand and
setup. This is mostly due to poor documentation on the part
ot Intel. Fortunately, Intel provided sample procedural
binding to the iVDI720 and it is these procedural bindings
that are used to access the iVDI commands.,

The graphics controller is attached to the Multibus system
as a logical device :VDI:. It is through this logical
device name that ROM software can be accessed on the
controller. The iVDI720 manual is vague on how to actually
send the commands to the ROM. This is where the language
rinding procedures come in handy. The VDI language binding
provides the procedures that send specific commands to the
VDI device. The procedures send parameters in the format
required by the YDI device.

To use the language binding, the graphics must be
initialized by the procedure INIT#GRAPHICS (backgroundcol or) .
After initialization all other language binding procedures
can be called into action. For the experiment in Appendix 1
lines were drawn using LINE(x1,y1,x2,y2). Text was
displaved using TEXT(x,y,flag,count,pointer?. Of couwrse the
appropriate setup needs te be done before calling these
procedures. The above procedures are found in the file,
VOLANG.EXT. It is well worth while tao print out this file.
While the file contains absolutely no comments, it does
provide the user with a list of commands and required
parameters.

SYNCHRONIZATION MODEL

FOR 3B6/22 «——> 284/10

COMMUNICATION

(START)

=

E86/22
SYSTEM
INITIALIZATION

¥

WAIT FOR
DATA¥FLAGFIN
= TRUE

CASE SELECTION

286/10
ON COMMAND
i 2 3 A
JL \ 4
EXECUTE EXECUTE SET
DYNAMIC FULL MATH
TEST MODEL MODEL

SET PAST DERIVATIVES

FRESENT DERIVATIVES

SET
DATA$FLAGFIN
= FALGE

FIGURE 3

Overall the performance of the VDI package is slow. Iteg
performance is on par with araphics on an 8-bit IEM-FC class
machine. There are no figures available which allow for a
numerical value on the performance. But from the empirical
results obtained over several experiments, both real ~time
and non-real-time, it is safe to say that the VDI package
will not allow real—-time output of a high speed process.

The only solution for this is to perform the graphics by
direct access to the hardware. In general, this is not the
Purpose of the graphics module when utilized by aero
engineering students. However, it is a good problem for a
computer science major.

DRAWBACKS AND UPGRADES FOR THE INTEL SYSTEM

Over the past four years the Intel 286/10 based system has
undergone considerable change. HMost of these changes have
involved adding additional hardware and software. In the
beqginning it was hoped that the system would provide an
economical base for real-time flight simulation. Experience
has demonstrated that the computing power of the 2846/10
coupled to the 386/27 processor is sufficient to support a
medium sizred simulation that operates it real-—-time.
However, the system will not support real-time insturment
displays or any form of an out-the-window display. This is
a disappointment considering that FC class machines support
flight simulation models adequately as it pertains to the
graphics. The models for these simulations may be weak but
the displays do operate in pseudo real-tinme. It must be
stated that the system is well suited to static displays
like the ones generated for the experiment in Appendix 1.
It 1s unfortunate that hard copy of the displays is not
avalilable.

It is obvious that the major problem of the Intel system is

the graphics coupled with system configuration limitations.

The following suggested solutions would enhance the system a
areat deal.,

1. Increase the 286/1@0 memory to 1 megabyte. The existing
-3 megabytes is inadequate because of limited straping
options. 1/0 can only bhe performed via the kevboard.

2. Change the operating system tao RMX28& and run the
286710 processor in protected mode. We have RMX286&
but 1t can not be installed unless the memory is incr-—
eased to at least .7 megabvtes. Running in this mode
will free up the strapping options and allow for real
1/0. The disadvantage is the reconfiguring of all
existing software to operate in protected mode.

i

S. Either rvewrite all the graphics software or upagrade the
graphics processor. Rewriting the graphics software is
a labor intensive job best performed by computer
sClience maiors. Upgrading the qgraphics processor is a
cost item coupled with the generation of new software.
Either solution is not very attractive at this point as
will be explained later.

4. Run the 386/22 processor board in protected mode. This
will free up an additional 1 megabyte of memory.
Running in protected mode the 38&/22 processor can make
use of its full 32-bit capability. This would increase
its computing power by a factor of 3% or more when run-—
ning math intensive programs that require a great deal
of floating point arithmetic. To do this requires
purchasing RMXI846 and making a maijor configuw ation
change to the entire system. This would be both costly
and require a great deal of man—hours.

All in all the ahove solutions still do not create the type
of system suitable to aero engineering majors who have
limited computing experience at a system level. The multi-
processing environment overshadows the main objective of
introducing basic problems associated with flight
simulation. This can be overcome if aero engineering majors
were required to take a few more courses in computer
science. ’

A better solution is to make the system so "canned" that the
student need not know any aspect of the problems associated
with a multi-processor sytem. To a large extent this has
been the main objective of this project and has been
successful for executing experiments such as the one
outlined in Appendix 1, However, it must noted that the
students participating in these experiments were not aero
engineering majors but electronic engineering majors. While
the electronic majors did not fully understand the aero
aspects of the experiments they were fully capable of
generating the required support software to make the system
apper user—friendly even to a novice computer user. or
this reason the sytem is now fully capable of supporting
static type experiments, minus the desired hard copy output.

While the above upgrades would provide for fullup real—-time
flight simulation experiments this could nat be achieved
without considerable cost ie., #5,000, and many man hours of
software development. For this reason an alterpate solution
is proposed.

AN ALTERNATE SOLUTION AND CONCLUSIONS

The rapid changes in computer technology over the past fouwr
vears have made systems like the Intel 310 obsolete. At
hbest the I8&/22 processor can be considered a 3 tao 4 Mips
machine when running in protected mode. Even the Intel 486
processor can only be considered an 8 Mip machine. With the
advent of RISC technology coupled with new high speed
graphics processors the modern "work station” is the way of
the future. These work stations, varying in computer power
from 10 to X0 Mips, provide a solution for introducing many
aspects of flight simulation in the educational environment.
Their cost continues to +fall. It is now possible to
purchase a 27 Mips machine for under $10,000. In addition
there are several manufacturers,such as, Sun/Sparc,

IpM/ 6000, DEC/3100, HF/AppolloyNeXT,DG/AVIiION, etc. Not all
of these work stations employ RISC technology but they all
seemn to be in the same class. Most come with 8 megabytes of
main memory as standard and most suport LAN technology to
the fullest. Several of these workstations have DOS

emul ation as well as UNIX.

Une of the major advantages of these machines, when viewed
by an aero engineering major, is that the student does not
have to have a complete understanding of the system—level
hardware or software. They do require a working knowledqe
of UNIX but this is basic to most major curriculums. At the
junior/senior level the students already have a working
knowledge of UNIX.

With this idea in mind the system i1llustrated in Figque 4 is
an example of what can be put together for under $20,0800.
This system would support any medium sized simulation,
provide for all instrument display, give a good out-the-
window display, and even support avionics displays. The
system could operate in real-time, for both computations and
graphics. The advantage to such a system is that the
student can concentrate on the aero problem and put the
system configuwation problems in the background. In
addition, the system is tailored to interface to a larger
network providing a much bigger data base and the
oppartunity for many students to simultaneously work on one
problem or one experiment.

Such a system 1s already being incorporated into the
Electronic Engineering Department. It consists of 8
DEC/310W wark stations with DISC SERVERS. The Flight
Simulation Laboratory at Cal Foly is now considering the
purchase of two more work stations, either DEC/3100 or
IEM/ 6000 class machines. These machines would be on their
awn network for high speed communications but would have

P N - r 3HNOT A
) o ,_,..\. - 1//‘,
J - N,
P e Y, -
- \
\.‘.. wrtb.!{.
m. ‘ ’ .
m / S
f INHWAOTIRABA WOHD0M L INBWADTHIASA WYHO0N w
\ (ING \ (INY : " . .
\ - e . - - . 4 - i SAMHANOD LNt T
N AYTHSTA MOQR T M-k - 100 \ AYINLS T MOANTM=-3H L~ 1N0 w ’ NOT YRS
’ AT AS T LRGN) AV TS T LNAWAMLENT j M. i
M T , , { e LR L R i e [N R Lot b
\ \ .
N N AN N e

A

!
_{

NOT LY INWA NOT LY INWE -

500 aNY X INM a0a ANy XINA
HLIM HLIM

NOTLYLS HMOM NOTLYLS HMOM -

20 1<03a on1<03a FAMIHIYW SSY0)

19/0d WAl

LNAWAOTIAZA WM
I AYHW0D 500
ATING NOTLYIMWIS MO
LANMEHLE Y207

AMOMAAN LNEWLMY A3

ﬂA SHIAAMES

BNOTLYLS HMOM
3810

SHILNINA AMOMLIN SNdWYD
MIHLO i - A

direct access to the department network for file transfer
operations. BRecause the department network is connected
campus wide students in aero engineering would have access
to the two work stations reserved for flight simulation.

It is hoped that this system will create an environment
where flight simulation experiments can become a permanent
part of the aero engineering curriculum.

It should be noted that the Intel 310 system can still play
an important part for senjior project studies and master
thesis work. This is particularly true for electronic
engineering majors and computer science majors.

APPENDIX 1

PITCH ATTITUDE HOLD SYSTEM

EXPERIMENT

EL 520 PROJECT

PITCH ATTITUDE HOLD SYSTEM MODEL AND SIMULATION PROGRAM

PURPOSE

1.

Gain experience in the formulation of continuous dynamic system models
defined in block diagram form. _

Gain experience in the programming and checkout of a simulation model
running on two microprocessors that communicate with each other over
Multibus I. In addition, gain experience in the formulation of math-
intensive programs that utilize NDP coprocessors.

PROCEDURE

1.

From the given block diagram formulate the equivalent system of equations
for the system simulation model.

Prepare a PLM-86 program that implements the simulation. The program
shall consist of 5 parts: 1. The main module; 2. A procedure to simulate
the input to the model; 3. The model; 4. A procedure to output the results
to a printer in numerical form and output the results to a CRT in
araphical form; 5. A procedure to handle communication between the 286/10
processor and the 386/22 processor.

NOTE: The simulation model should run on the 386 processor. All results are
to be passed to the 286 processor for scaling and output.

Refer to the block diagram. With the elevator servo locked at zero

position run the short period response of the ajrframe to the +/-10°
elevator dublet and verify your pitch rate response with the dynamic
check data. :

Run the complete simulated pitch attitude hold system response to a +50 step
command O¢ starting from zero initial conditions. Plot the following
variables versus time: 8¢, e, ©, &€

Run the step response withKré = 0 simulating the loss of pitch rate
feedback.

NOTE: The following time constraints apply: Step size (DT) = .001 sec

7.

Sample time = .01 sec
Run time = 10 sec

Prepare one report that presents your methods, results and interpretation
of the system performance.

Av\\t%n‘u“%u\ u,..:\w\v Q"7 =

LTS 700)
b\\\w\SQ\QJ

i
Nao!

243 saby £/ T 7

¥,
7N

)
1
NS

—\k«.\ \Q g [rhell

(el 117 VO Yoy gtoZai v“u
e, pLety SN IL
N A TArLrTed S :\:.v

. S PPN
‘ =4 2 - < -
(> ougaszd vocdlscd) Q7T = kv\ 270" = T /" ¥
MR a7 7L TLVY 5 ~91LI50d
SE|
Gy +
OYAH H#2Lld
275/, 06 £
Lot 7 TLHY
Lo 7 -
S 7575 (73 BM w{\wh qoLnaTd [+S°H e "
FavLiuy < S ~ -
word o L e Am\+wvm»\ I Y
‘ oV i 16 DD
volUliy 7 iy HoLld
Tl AN QOUYTd ~LETH S
(YN LSTL

wvorlrsod ¥OLYAT TS

Ll FLSAE QUL FTULILLY HOL/A

o PR QUALITY

TLEiM =

4 } 4 } 3 i S e WPa T 3 1 il } E } IS 3 } 1 =
T L Ll L Ll l, { ;.('\d v,y L) L] T L ¥ 1 L] L) T
> -
¥
3
s
3
1 1T
1 T o4
[4 } 1 1 1 4 1 H] 3 1 L 3 H 1 1 1 1)1 [1 [l 3 1
¥ T L] L4 L L) T 1 L T L) L] L L] L] L] T L L] T 1 L] T
.
[1 1 It (] b 1 1 1 1 [b i 13 I L 1 1 '} s 1 i
T T L L) L} T T 1 T 1 L] 1 v L] T 1 L Ll 4
~ l /
T T
T
T T
31
: o
;! +
11 +3=
Sass B

T4R DyNAHIC CHecK
é/eva’}or‘ Joa!o/e-'{’ C/Odléa,/ﬁéec)

Ap/procc,c//u 'ér/m *1(\/!86‘\:}_ Cm/‘c{”.’yl/c‘m .
H so0 L+
KEAS /00 /(7407/5

F/a.los 35 ©
Ceay docovt

ORIGINAL PAGE IS
OF POOR QUALITY

29142101 G2

ae s mesr 1000 - ——— . o ——

,m H - - M ' _ﬂ o “) _” ’ &—.o.ﬁloml

-

>
e

2t d-4—5t~

P L
IR b
J
™

-
!
aas sesasmussirsiachee ..o.........o\:-:-:.oﬁ-... '

ez bt - [P .l.xl..'lltlt...-n...rua.lﬂ.\l‘.\“v_ e et .. , 80-39~-5-

s0°0 |~0

—te

er*e F»
%0THO OIHUNAQ HEVL .o o,

+ mas——— -

9 NNy

[4

TY

EIS

ORIGINAL PAC
OF POOR QUALI

e - vt 4 Sl -ttt e e

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

R QUALITY

PGO

OF

UIUGINAL PAGE IS
OF POOR QUALITY

“%-J H L NP i i‘ 1 TCODE

LORen
Oor ¢

U,
52
-
£

L5

2y,
W

0 I

PAGE IS
QUALITY

APPENDIX 2

286/10 COMMAND/EXECUTIVE MENU CONTROLLER

L RIS
Of PCOR QUALITY

EXW

CRIGINAL PaGE IS
OF PCOR QUALITY

Tlowing

ot o

ORIGINAL PAGE 1s
OF POOR QUALITY

ORICINAL PAGE 1S
OF POOR QUALITY

gl s

S AR

1 mer

PR B R
the
wint yetl

W R
byed 1

T e

hs

oy b

3

SRR VR S S 3 RPN At F A

stringly

7 (variable 10, Boutput
fring(@mutput_‘tringy@iﬁ,
‘ print the variables you have o

Lringd s

 Eoutput

"

R

R

e
i

1h

clariv

Al v

cubsm™ i

ot the

3 the type of we will be displaying on owr

FtentEfont¥Findes
foharact

I VIO 0 WO O T A

iahle to be

endsy

it

Ly

JO S
{10 &L

KRBT H

g d
-] :

fix (Float (numb

iridl

:ﬂtmtim@wduratian”tawgraph;

IELI T S ST a2 2

v lir

display is v
bton lefh

Frand
480 F

3 2

'?.m')) . :\’/:) t

yvour graph

e

i
"

g

(W [N a5 Vol 4 antid 4oer et b O T e T

le _info_ptyr — pointeyr
variable such as its max and min values
‘ the max and min value

par ame

war i

to a structuwe that contains

— the % coordinate

to be weitten on 18 SO EEn
max _val _v_pltr - pointer to the y coordinate
maximum value for the vari

-t the vy coordir

the

values

-~ point

minval v
minimum value for

~ pointer to the =

1 Aame
var i
oy ~ pointer to the vy coor
g Wi
L ar

ey e oy -
var-iable

- o sy

Llhve wa:

Y

B AW E R H M

procedure

label _gra

deciare

[P O)

total time for
betwaen suc ve sampl of the input signal
the simulation data

4
LI
T L

G e
abr i

T
Y H T2

Then

SRR

tring
tring (Bvari
ringl@varia

tring (@variable

FLamen o

s
=R
i (answer

dons = TrUe sy

modules

